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The specific heat at constant pressure, Cp, of aluminum measured by Ditmars, 
Plint, and Shukla has been reduced to the volume V0 appropriate for 0 K 
employing the Murnaghan equation. The C,, o thus obtained is compared with 
the theoretical Coo calculated in the harmonic and the lowest-order anharmonic 
approximation from three different pseudopotentials (Harrison, Ashcroft, and 
Dagens-Rasolt-Taylor) as well as a phenomenological Morse potential. The 
higher-order (2 4) anharmonic contributions are calculated from the same 
nearest-neighbor Morse potential as in the lowest-order anharmonic theory. The 
role of the vacancy and the higher-order anharmonic contributions to Coo has 
been examined and we conclude that the 2 4 contributions to Coo are much 
smaller than the vacancy contribution. After removal of the vacancy con- 
tribution, the reduced Cv0 is found to be in excellent agreement with the 
Ashcroft and Harrison pseudopotentials as well as the Morse potential 
including the 22 and Z 4 contributions to Cv0. 

KEY WORDS: aluminum; Helmholtz free energy; anharmonic A1 fcc crystal; 
constant-volume specific heat; heat capacity; interionic potentials for A1; pertur- 
bation theory to 0(22 ) and 0(24); Van Hove order parameter (2). 

1. I N T R O D U C T I O N  

A m p l e  j u s t i f i c a t i on  for  a def in i t ive  m e a s u r e m e n t  of  the  specific hea t  at  con -  

s tant  p ressure  (Cp) of  A1 in the  t e m p e r a t u r e  r ange  273 to  933 K c a m e  f r o m  

the  recen t  w o r k  o f  S h u k l a  a n d  P l in t  [ 1 ] .  T h e  p r e c e d i n g  p a p e r  1-21 presen t s  
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just such a Cp measurement. In this paper, we present a theoretical analysis 
of these specific heat results, as well as those of Leadbetter [-3], Brooks 
and Bingham [4], and Takahashi [5]. There are several steps in the 
theoretical analysis that must be completed before the new Cp data can be 
compared with theory. In fact, the theoretical calculations are carried out 
for Co0-Cv0(V0, T) which represents the specific heat at constant volume 
reduced to the volume V0 appropriate for 0 K. In the previous work of 
Shukla and Plint [1 ] the reduction from Cp to Cv0 was carried out by the 
Slater-Overton [6, 7] procedure. For aluminum, this procedure, when 
extended to 900 K, produced an oscillation of the correction term E(T) = 
Co - Coo [in which Co -= Co( V, T)] from positive to negative (500-600 K) 
and back to positive above 600 K. The anharmonic correction E(T) is 
small for aluminum and the unphysical oscillation may represent the effects 
of the approximations of the Slater-Overton procedure and of the uncer- 
tainties arising from the assumed thermal expansion and compressibility 
data. For the alkali metals, which have a much larger anharmonic correc- 
tion, the Slater-Overton procedure for finding E(T) always produces a 
positive correction term [8]. To avoid the difficulty mentioned above in 
A1, we have converted Co to Coo by an alternative method using the Mur- 
naghan equation [9]. This procedure yields satisfactory results. 

Our earlier theoretical calculation [1] of Cvo was carried out 
employing the lowest-order (cubic and quartic) anharmonic perturbation 
theory [0(22)]. It was not known if the contributions from the higher- 
order perturbation theory, i.e., of 0(24), are significant in A1. In this paper, 
in addition to the 22 contributions to Coo, we calculate the higher-order 
perturbation (24) contributions to Cvo [10] from an effective Morse poten- 
tial. From this calculation, we hope to find the relative importance of the 
22 and 2 4 contributions to Coo. 

A summary of the theoretical calculations, including the 24 con- 
tributions to Coo and the reduction of the new experimental data, is presen- 
ted in Section 2. Here, we note a sharp contrast between the behavior of 
C,0 for A1 determined from the new specific heat data [2] and that shown 
in Ref. 1, which was based on previous specific heat data [3, 4]. The 
calculation of the 2 4 contributions to C~o is also presented in Section 2. The 
numerical results and discussion are contained in Section 3. The agreement 
between the theoretical and the new experimental values of Co0(T) is more 
than satisfactory in the range 400-900 K. The conclusions of this work are 
presented in Section 4. 
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2. REDUCTION OF Cp TO Cv0 A N D  
A N H A R M O N I C  C A L C U L A T I O N S  O F  O R D E R  ~z A N D  ~4 

The correction from Cp to Cvo was made by, first, obtaining the 
entropy So = S(Vo, T) at the 0 K volume from the experimental entropy 
S~ = S(V, T) [-2] measured at constant pressure Pl using the relation 

v 
So=S -fvo( J  (1) 

The isochores required for the evaluation of the integrand were generated 
from the Murnaghan equation [-9] 

p2-pl=-- .~ - 1  (2) 

in which vl and v2 are the volumes in the states (Pl, T) and (P2, T), 
respectively, B is the isothermal bulk modulus in state (Pl, T), and W= 
(3B/Op)v at T. In making the calculations, the isothermal quantities B and 
W were derived from the corresponding adiabatic quantities Bs and Ws, 
using the formula 

1/B = 1/B~ + TV/32/C,, (3) 

together with the result of Overton [-11 ], 

W= W~ + Z(1 -2B' /B/3-ZW~)+Z2(Ws - 1-/3'//32) (4) 

z=  rv/32 /c  (5) 
in which /3=(1/V)(OV/3T)p and the prime denotes differentiation with 
respect to temperature. (Note that the originally published formulas [-11 ] 
were in error.) 

The data sources used for the quantities /3, V, B~, and Ws were as 
follows: 

fl, V(T< 300), Fraser and Hollis-Hallett [,12] and Gibbons [,13]; 
/3, V(T> 300), Simmons and Balluffi [,,14]; 
B~(T< 300), Kamm and Alers [,,15]; 
Bs(T> 300), Gerlich and Fisher [,16]; and 
W~, Schmunk and Smith [" 17 ]. 

The isochores were almost straight lines. The slope of each isochore 
for the temperature range 400~< T~<900K was obtained by a linear 
regression. The set of values of (Op/OT),~ thus found was used to evaluate 
the integral in Eq. (1) to obtain So. 
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As a second step the electronic contribution [18] to the entropy at the 
0 K volume was subtracted. For A1, the coefficient of electronic specific 
heat, 7, is known from the low-temperature specific heat measurements of 
Phillips [19]. However, whether one should use this value of ~ in the 
analysis of the high-temperature (T>0D) heat capacity and entropy is 
questionable because of the temperature dependence of the electron- 
phonon contribution to 7. There are several contributions to 7 arising from 
the free electrons (7o), the electron-phonon interaction [Tl(T)], the 
electron-electron interaction (Ye~), and finally, the band structure effects 
[TB(T)]. The sum total of these contributions to the electronic specific heat 
Co is given as 

Ce = [70 + 71(T) + Yee + 7B(T)] T (6) 

The theoretical calculation of 71(T) by Grimvall [20] indicates that in the 
high-temperature limit (T>0D), 71(T) does not contribute. The tem- 
perature dependence of 7B(T) is not known in detail at this time. However, 
we can obtain some estimate of 7B and Tee (a small contribution) from the 
work of Ashcroft and Wilkins [21]. Since the harmonic and anharmonic 
calculations reported in this paper have been performed in the high-tem- 
perature limit, we represent Ce by (70 + 7B)T with 7B = 0.0670 [21], SO that 
CJT= 2.438 x 10 - 4  cal" mol 1. K-2. 

The resultant entropy, Sv0, was subjected to a smoothing procedure. 
Finally, the specific heat at the 0 K volume, Cv0 = T(dSvo/dT), was obtained 
by four-point differentiation and smoothing of the results. 

The difference A(T)-=Cp(T)-C~o(T ) between the experimental Cp 
values and the reduced C,0 for the new data [2] was then subtracted from 
the literature Cp(T) data [3, 4, 5] to give other sets of Cv0 values for com- 
parison purposes. These C~0 values are summarized in Table I. Figure 1 
shows the values of C~0 reduced from the new experimental data [2] and 
the values reduced from literature Cp data [-3-5]. The results of the present 
work show a steadily increasing specific heat (with upward curvature 
above 550 K) that reaches 3R near 775 K. As found in previous work [1], 
there is a wide discrepancy in the Cv0 values obtained from the Cp results 
given in Refs. 3 and 4. The Brooks and Bingham data give a Cv0 that 
reaches 3R near 625 K and shows a marked upward curvature for 
T>700K.  Leadbetter's data give a Cv0 that never reaches 3R. The 
apparent decrease in this C~0 after reaching 5.82 cal" mo1-1. K -~ at 700 K 
may be a consequence of errors arising from the end point of the range of 
specific heat measurements near 750 K. The results from Takahashi's data 
are similar to those obtained from Leadbetter's data up to 650 K but 
increase steadily with increasing temperature above 650 K. The graph does 



Aluminum. II. Derivation of C~o 

Table I. Values of the Specific Heat at 0 K Volume Reduced from the 
Experimental Data of Four Investigations 

521 

C~o (cal-mo1-1. K -1) 

New results, 
T (K) Ref.2 Ref. 3 Ref. 4 Ref. 5 

400 5.665 5.598 5.664 5.580 
450 5.735 5.655 5,752 5.648 
500 5.780 5.732 5.814 5.703 
550 5.814 5.762 5.868 5.756 
600 5.839 5.798 5.922 5.794 
650 5.870 5.814 5.979 5.815 
700 5.900 5.824 6.052 5.826 
750 5.936 5.798 6.123 5.866 
800 5.974 6.206 5.904 
850 6.013 6.320 5.931 
900 6.060 

not reach 3R by 850 K. The Cv0 curve from Takahashi's data is essentially 
parallel to that obtained from the new data but is consistently lower over 
the entire temperature range shown in Fig. 1. 

For  any of these curves the portion above 3R must be accounted for 
by invoking the anharmonic and vacancy contributions to Cv0. To separate 
these two contributions we need to calculate all the anharmonie con- 
tributions to Cv0, and then the remainder must be the vacancy contribution 
because there are no other excitations in A1 which contribute to Co0 in the 
temperature range 700-950 K. 

First, let us examine the anharmonic effect. This can be evaluated 
either by the lattice dynamics method [i.e., the perturbation theory (PT) or 
the self-consistent phonon theory],  which is valid for all temperatures, or 
by computer simulation techniques such as the Monte Carlo and molecular 
dynamics methods, which are usually applicable in the classical high-tem- 
perature limit ( T >  0D, where 0o is the Debye temperature). Among these 
methods only the perturbation method has been applied up to now in the 
calculation of C,0 for AI by Shukla and Plint [1 ]. Their calculation was 
carried out employing the lowest-order perturbation theory, which requires 
the numerical evaluation of two terms in the Helmholtz function (F). These 
terms arise from the cubic and quartic terms of the Taylor expansion of the 
crystal potential energy [- V(r)]. 

If we denote the perturbation expansion parameter by 2, defined as the 
ratio of a typical root mean square atomic displacement and the nearest- 
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Fig. 1. Reduced specific heat of AI at 0 K volume (Co0) versus temperature 
(T). (A) From smoothed data of Brooks and Bingham [-4]; (0) from 
smoothed new data [21; ( � 9  from smoothed data of Takahashi [5]; (�9 
from smoothed data of Leadbetter I-3]. The bar at the right represents 1% 
of 3R. 

neighbor distance, the lowest-order PT contributions to F are of 0(22) and 
their contribution to Cv0 is proportional to T in the high-temperature limit. 
Since our "experimental" Coo indicates an upward curvature, it is necessary 
to look for additional anharmonic contributions to Cv0 which vary as T 2. 
In fact it has been shown by Shukla and Cowley [10] that all the T 2 con- 
tributions are given by the PT of O(24), which requires the numerical 
evaluation of eight terms in F. The anharmonic Hamiltonian (HA) is given 
by 

H A = 2V 3 -k- 22V4 + 23 V 5 --~ 24V6 (7) 

which is obtained by expanding the potential energy in powers of the 
atomic displacement and truncating the expansion after the sixth-degree 
term. The eight contributions to F of 0(24) arise from the V6, V4-V4, 
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V3-Vs, V3-V3-V4, and V3-V3-V3-V 3 interactions in the first-, second-, 
third-, and fourth-order perturbation theory, respectively. In the diagram- 
matic language, these contributions to F have been derived by Shukla and 
Cowley [10]. It should be noted that there are two distinct contributions 
or diagrams for each of the V4-V4, V3-V3-V4, and V3-V3-V3-V3 interac- 
tions, whereas there is only one distinct diagram for the V6 and I/3 V5 
interactions. We present these diagrams and the two lowest-order )~2 
diagrams in Figs. 3 and 2, respectively. Symbolically they represent the 
various phonon lines connecting the different vertices Vn (n = 1, 2 ..... 6) for 
the different combinations listed above. In the high-temperature limit, their 
contributions to F are listed in Table II, where the meaning of the various 
symbols is as follows: h is Planck's constant divided by 2n, fl = (kBT) -1, kB 
is the Boltzmann constant, ~o(2k) is the phonon frequency for the mode 
2k = (qkJk), qk is the wave vector, and Jk is the branch index. In general the 
V function is defined by 

..... 2,) = (1)NI-n/2A(~]~ + "'" +4 , )  V(~ 1 

x {  h ,]1/2 
\2nO)(,~iV,, (,0()~n)// (~(~1,'", An) (8) 

),l 
(Q) 

ha 

(b) 

Fig. 2. Diagrams of order 22 (cf. text). 

840/6/5-7 
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(a) (b) 
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Xz 

(c) 

X~ 

X4 

(e)~ (f) ( ~  

x3 ,x6 

xa 

CO) 

~3 

(h) 

Fig. 3. Diagrams of order .~4 (cf. text). 
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where N denotes the number of unit cells in the crystal and 
A(4~ + 42 + "'" 4,) = 1 if the argument of the A function is a vector of the 
reciprocal lattice (including zero) and zero otherwise. The q~ function is 
defined by 

1 , 
�9 ().,,..., 2,) = 2M,/2 ~" ~ q)~B...~(I/~A) e~(2,) e~(22)"" e7(2,) 

l a/~"" 7 

x l~[ [1 -exp( i~ j 'R t ) ]  (9) 
j = {  

where M is the atomic mass,/~t is a vector of the direct lattice, and e~(2j) 
(j  = 1,..., n) are the components of the eigen-vector ?(2j). The prime over 
the l summation indicates the omission of the origin point. 

The calculation of the diagrams presented in Fig. 3 is extremely com- 
plicated because of the multiple Brillouin zone (BZ) sums as well as the 
summation over the neighbors and the tensors ~b~;...~. So far, they have 
been evaluated only for the Lennard-Jones nearest-neighbor interaction 
potential for the fcc crystal by Shukla and Cowley [10] and Shukla and 
Wilk [22]. To get some idea of the magnitude of F to 0(24) in A1, here we 
have chosen to calculate the above eight contributions for the Morse 
potential. Recently the nearest-neighbor interaction Morse potential has 
been used successfully in the calculation of the thermal expansion and 
other thermodynamic properties by Shukta and MacDonald [23] and 
MacDonald and MacDonald [24]. The Morse potential with its 
parameters D, a, and r0 for A1 is given in Ref. 23: 

(J(r)= D{exp[- Z~(r- ro)- Z exp[-~(r- ro) ] } (10) 

where D =0.6369 x 10 -12 erg, a = 1.1611 (~)-~, and r0 = 2.8485/~. 
The tensors ~b~...~ needed in the calculation of the diagrams of 0(22) 

and 0(24) are obtained by differentiating the above potential. The c~(~j) 
and d(4j) are obtained by diagonalizing the dynamical matrix D~;(4), 
which satisfies the eigenvalue equation 

y. D,~( q) e~(4j) = o~2(4j) e~(qj) (11) 
fl 

where D,~(4) is obtained from the second-rank tensor derived from the 
Morse potential. 

The closed loops appearing in Figs. 2a and 3a~t involve a single BZ 
sum which has been evaluated with 108,000 points in the whole zone. The 
other diagrams (Figs. 2b and 3c, d, and f), in which the phonon lines con- 
nect the different vertices, have been evaluated with 500 wave vectors in the 



Aluminum. II. Derivation of C~o 527 

whole zone. We have used a combination of 215 odd and even wave vec- 
tors in the calculation of Figs. 3g and h, and finally, Fig. 3e has been 
evaluated by the plane-wave method as given by Shukla and Wilk [22]. 
We omit the rest of the details of the calculation of the diagrams, as they 
are given by Shukla and Wilk [22]. 

The harmonic contribution to C,0 is calculated from the well-known 
formula 

~hco(~j)~ 2 Cosech 2 (hco(~j)~ (12) C,h,0 kB Y 7; L 2k. T J \ k. T J 

In the work of Shukla and Plint [1], the above expression was evaluated 
numerically by performing the ~j summations for a large number of points 
in the Brillouin zone. It was noted by Shukla and Plint that the three-term 
high-temperature expansion gave the same results as Eq. (12) in the tem- 
perature range 550-900 K. In the present work, we are able to evaluate this 
expression analytically for the central-force nearest-neighbor model of the 
fcc crystal. The high-temperature { [hco(~j)/2kB T] < 1 } three-term expan- 
sion of C~0 is 

1 rhog(~j)]2 + 1 Vho~(~j)-] 4 
{1-gL 2k.r j L j+ } (13) 

The sums Zcj oa2(4J) and Y,r co4(r can be evaluated from the eigenvalue 
equation (Eq. 11 ). Omitting the details we find the following: 

C~o=3Nk, f l _ 3 ~ /  h ,~2[, , 2  1 tk~)  t ~b +r4b')+~(+)4(~b"+2+')2 l r  (14, 

where ~b' and ~b", the first and second derivatives of ~b(r), are evaluated from 
Eq. (10). 

3. RESULTS A N D  DISCUSSION 

The numerical results for all the diagrams of 0(22 ) and 0 ( 2  4 ) for the 
nearest-neighbor Morse potential are presented in Table III. It is 
interesting to note that among the 24 diagrams, the contribution from 
Fig. 3b is close to that of the total F(24). In fact the sum of Figs. 3a and b 
is only 2.5 % lower than the total F(24). 

A detailed calculation of the harmonic and anharmonic (22) values for 
C~0 indicates that although the contribution to C~0 from F(2 4) is three times 
larger than that from F(22), it is not sufficient to account for the upward 



528 Shukla, Plint, and Ditmars 

Table IlL Anharmonic Contributions to the Helmholtz Free 
Energy (Figs. 2a and b) are in Units of N(krj T) 2 • 1012 erg-1 

and Figs. 3a-h are in Units of N(ka T)3• 1024 erg -2) 

Fig. No. Contribution 

F (2a) 0.38012 
F (2b) - 0.40767 

Total F(22) = -0.02755 N(kB T) 2 x 1012 erg-I  

F (3a) 0.01742 
F (3b) -0 .21506 
F (3c) -0.38556 
F (3d) 0.60435 
F (3e) -0.34431 
F (3f) -0.50573 
F (3g) 0.74463 
F ( 3 h )  -0.11823 

Total F(,~ 4) = -0.20249 N(ka T) 3 • 1024 erg -2 

curvature in Coo. The total contribution (22 and 2 4 ) from the Morse poten- 
tial 1-23] is very similar to that from two of the pseudopotentials (Ashcroft 
[27] and Harrison point ion 1,26]). 

We present in Table IV and Fig. 4 the values of the total Coo, har- 
monic plus anharmonic, to O(22), calculated for the three pseudopotentials 
used in Ref. 1 (curves 1-3) and for the Morse potential, with the anhar- 
monic contribution to 0(22) (curve 4) and t o  0 ( 2 4 )  (also curve 2). Only 
the DRT potential 1-28] gives a Coo that rises above 3R, while, at best, the 
Harrison and Morse [to 0(24)] potentials give a C~0 that approaches 3R 
at 900 K. 

From the results presented in Table IV, it is interesting to see that the 
results for Coo obtained from the nearest-neighbor (harmonic as well as 
anharmonic) Morse potential are so close to the Ashcroft (a sixth-neighbor 
harmonic and anharmonic interaction) and Harrison point ion (13- 
neighbor harmonic and 8-neighbor anharmonic interaction) pseudopoten- 
tials. The latter two potentials have a much more sound theoretical basis 
than the Morse potential and involve a large number of neighbors in the 
harmonic and anharmonic calculations. 

In Fig. 4 we also present the reduced C~0 values obtained from the new 
experimental data I-2]. They lie on a smooth curve (curve 5) which exhibits 
an upward curvature for T>  550 K and rises above 3R near 800 K. Since 
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Table IV. Total Calculated Harmonic Plus Anharmonic Contributions to the 
Constant-Volume (0 K) Specific Heat of Aluminum for 

Three Pseudopotentials and One Phenomenological Potential 

529 

c~0 (cal. mol 1. K-l) 

T (K) Harrison Ashcroft DRT Morse (22) Morse (2 2-t- 2 4) 
[26] [27] [28] [23] 

400 5.68707 5.70620 5.73119 5.69960 5.70757 
450 5.75109 5.75849 5.79524 5.75499 5.76507 
500 5.79842 5.80303 5.84347 5.79536 5.80781 
550 5.83460 5.83689 5.88116 5.82570 5.84076 
600 5.86307 5.86349 5.91155 5.84912 5.86704 
650 5.88605 5.88483 5.93676 5.86761 5.88865 
700 5.90500 5.90237 5.95818 5.88250 5.90690 
750 5.92095 5.91704 5.97676 5.89470 5.92271 
800 5.93461 5.92956 5.99317 5.90484 5.93670 
850 5.94649 5.94042 6.00792 5.91340 5.94938 
900 5.95697 5.94990 6.02134 5.92070 5.96103 

none of the calculated curves shows any upward curvature, we have correc- 
ted the experimental Cv0 for a vacancy contribution C~ ac using the 
expression 

CW ac = (NkB) exp(AS/kB)(E/kB T) 2 e x p [ -  (E/kB T)] (15) 

where E and AS are the energy and entropy of formation of a single 
vacancy, respectively. We use E = 0 . 6 6 e V  [25] and estimate that 
(AS/kB)<<, 1.8 on the ground that the corrected C v 0 - C  vac should not 
exhibit a negative temperature derivative. Curve 6 in Fig. 4 was obtained 
with (AS/kB)= 1.4. The vacancy contribution is evident at 600K. The 
agreement between this curve and the calculated values shown in curves 2 
and 3 is very satisfactory. While curve 6 lies below curves 2 and 3 over the 
entire temperature range 500 ~< T~< 900 K, the difference between them is 
only about  0.5 %. After correction for vacancies, the experimental C,0 does 
not reach 3R by 900 K. 

It should be noted that variation of the quantity I4I, Eq. (4), by 10%, 
to allow for experimental uncertainty in its value, makes a change of less 
than 0.2 % in the reduced values of Cv0. 

A comparison of the sets of values of the reduced Cv0 derived from 
previous experimental data [3 -5 ]  with the present values calculated from 
perturbation theory does not alter our previous conclusions [1].  The 
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Fig. 4. Calculated specific heat of A1 at 0 K volume (C,0) versus tem- 
perature (T) for four potentials (curves 1-4) and reduced specific heat for 
two sets of new experimental data (curves 5 and 6). Curve 1 ( ), from 
Dagens et al. potential [28];  curve 2 ( - - - )  from Harrison modified point 
ion potential [26];  curve 3 ( - . - ) ,  from Ashcroft potential [27];  curve4 
( . . . . .  ), from effective Morse potential [23] to 0(22); curve 5 (A) ,  from 
smoothed new data [2] ;  curve 6 (m),  curve 5 data corrected for the vacancy 
contribution to the specific heat. The effective Morse potential to 0(24 ) gives 
results that are indistinguishable from curve 2 on the scale of this figure. The 
bar at the right represents 0.5 % of 3R. 

results of Leadbetter [3] and of Takahashi [-5] still yield values of Cv0 that 
fall below the lowest of the calculated curves, even without correction for 
vacancy effects above 600 K. The results of Brooks and Bingham [-4] still 
yield values that lie well above the DRT curve for most of the temperature 
range, and a reasonable vacancy correction still does not bring about 
significantly improved agreement with any of the calculated curves. As 
noted earlier, the 0(24) contribution to Cv0 is greater than the 0(2  ~) con- 
tribution, thereby implying the need for a summation of all the con- 
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tributions from the perturbation series. It is unlikely that the total con- 
tribution evaluated by this procedure will produce a substantial rise in Cv0 
that will match the upward curvature. 

4. CONCLUSION 

The new Cp data for A1 reported in the preceding paper [2] has been 
reduced to C,0 using the Murnaghan equation. The lowest-order anhar- 
monic contributions are evaluated from a nearest-neighbor 
phenomenological Morse potential and several pseudopotentials. The con- 
tributions of the higher-order perturbation theory anharmonic terms to Cv0 
are evaluated for the nearest-neighbor Morse potential. It is concluded that 
the vacancy contributions to C~0 are more important than the higher-order 
anharmonic terms. After removal of the vacancy contribution from the 
values of Cv0 obtained from the new Cp data, excellent agreement is 
achieved between the theory and the experiment. It is also shown that the 
Morse potential results for C~0 are just about the same as those from the 
more sophisticated Ashcroft and Harrison modified point ion pseudopoten- 
tials. 
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